
H5hut: A High-Performance I/O Library for
Particle-based Simulations

Mark Howison∗, Andreas Adelmann†, E. Wes Bethel∗, Achim Gsell†, Benedikt Oswald†, Prabhat∗

∗ Computational Research Division
Lawrence Berkeley National Laboratory

One Cyclotron Road, Berkeley, CA 94720, USA
Email: {mhowison,ewbethel,prabhat}@lbl.gov

† Accelerator Modeling and Advanced Simulations Group
Paul Scherrer Institut, CH-5234 Villigen, Switzerland

Email: {andreas.adelmann,achim.gsell,
benedikt.oswald}@psi.ch

Abstract—Particle-based simulations running on large
high-performance computing systems over many time steps
can generate an enormous amount of particle- and field-
based data for post-processing and analysis. Achieving
high-performance I/O for this data, effectively managing it
on disk, and interfacing it with analysis and visualization
tools can be challenging, especially for domain scientists
who do not have I/O and data management expertise.
We present the H5hut library, an implementation of
several data models for particle-based simulations that
encapsulates the complexity of HDF5 and is simple to use,
yet does not compromise performance.

I. INTRODUCTION

Particle accelerators have enabled some of the most
remarkable discoveries of the 20th century and are a
cornerstone of research in fields ranging from basic
science to applied biologics. Accelerator-based systems
have now been proposed to address problems related to
energy, biology, and the environment that are of great so-
cial importance. The design, optimization, and operation
of these machines—some of the most complex ever built
by mankind—requires both advanced numerical methods
and high-performance computing (HPC) tools.

Particle-based simulations of accelerators, especially
in six dimensional phase space, generate vast amounts
of time-varying data. Reading and writing enormous
datasets for post-simulation analysis remains challeng-
ing, especially on massively parallel high-performance
computing systems. The HDF5 Utility Toolkit (H5hut)
simplifies these I/O tasks by encapsulating specific data
models in an easy-to-use C/C++ and Fortran API that
has been tuned to perform and scale well on modern
parallel file systems.

Although we focus on particle accelerator simulations
in this paper, H5hut naturally accommodates any time-

Fig. 1. These volume renderings of plasma density data from a
laser wakefield particle accelerator simulation were visualized from
H5hut output files using VisIt. Features of interest have been extracted
and highlighted in the visualization using state-of-the-art indexing
techniques.

varying data that can be described using particles, rec-
tilinear grids, or finite element meshes. H5hut has also
been integrated with FastBit [1] indexing technology to
accelerate queries of particle data and with analysis tools
such as the ROOT data analysis framework and both the
VisIt and ParaView parallel visualization tools.

II. RELATED WORK

H5hut is built on top of the Hierarchical Data Format
v5 (HDF5) file format and I/O library [2]. HDF5 pro-
vides several important features: it has a self-describing,
machine-independent binary file format; it supports scal-
able parallel I/O for MPI codes on a variety of HPC
systems; and it works equally well on workstations
or laptop computers. HDF5’s “object database” data
model enables users to focus on high-level concepts of
relationships between data objects rather than descending
into the details of the specific layout of every byte in the
data file.

Another common I/O solution for scientific data is
the Network Common Data Form (netCDF) library [3],
which offers flexible data models and machine inde-
pendence similar to HDF5. The most recent version,
netCDF-4, has adopted HDF5 as its intermediate layer
and inherits the parallel capabilities of HDF5. Prior to
that release, the pNetCDF [4] library provided parallel
support for the netCDF-3 file format. We chose to build
on top of HDF5 rather than netCDF because of HDF5’s
richer set of tuning parameters for file layout and parallel
I/O available through its “property list” interface.

The Geodesic Parallel IO (GIO) library [5] has similar
goals for ease-of-use as H5hut, but targets a different
science domain, namely climate modeling. It implements
a data model for geodesic grids using both netCDF-4 and
pNetCDF bindings.

The F5 library [6] builds on HDF5 to implement
more complicated data models. It supports a range of
grids, meshes, and fields by providing building blocks
based on the concept of fiber bundles form algebraic
geometry [7]. F5 implements user-defined and compound
types in HDF5 to encapsulate geometric objects, like
multi-vectors, and takes advantage of HDF5’s support for
type-casting, endian-conversion, and transformations on
the layout of types. While F5 is intended to be modular
and re-usable rather than to provide specific data models,
it does provide an example usage for particle-based data
models. However, F5 lacks the support that H5hut has
for parallel I/O and for writing large datasets on modern
HPC systems.

The Silo library [8] also provides data model abstrac-
tions on top of the HDF5 and NetCDF libraries. It can
represent many mesh types, variable types, parallel de-
compositions, and advanced abstractions such as material
volume fractions and species mass factions. In parallel
usage, the Silo library uses a subset of processors to write
out their own file, with a subsequent write to create a

master file that contains links to those files. Although
Silo can support the data models we are targeting, it has
the same drawback as using HDF5 directly, which is that
it provides unneeded features at the cost of additional
complexity.

Both the Parallel Log-structured File System
(PLFS) [9] and the Adaptable I/O System (ADIOS) [10]
address the performance issues of parallel I/O on large
HPC systems. PLFS is well-suited for check pointing,
where the state of a running application needs to be
quickly saved to disk in case of a system failure, and the
files may never be read again. It uses file-per-processor
writes to avoid the lock contention problems that arise
with parallel access to shared files, but presents a virtual
shared file by maintaining an index that maps the write
calls from each process to global offsets. Although
one could theoretically write an HDF5 or netCDF file
into such a virtual shared file, it is unclear how that
file would perform under read access. In PLFS, reads
require the additional complexity of querying a global
index file to lookup offsets into individual files in the
log-structured container.

ADIOS supports both file-per-processor and collective
access, and provides flexibility in how I/O is conducted
through parameters specified in an external XML file
that is read by the application at runtime. ADIOS
also features performance optimizations such as asyn-
chronous I/O, which double buffers data and offloads
I/O operations onto designated I/O threads, allowing
a computational code to continue non-I/O calculations
while I/O is handled in the background. This optimiza-
tion would also be possible in HDF5, although it has
not been implemented yet. Although ADIOS provides
interoperability with existing data formats like HDF5 and
netCDF, a post-processing step is necessary to render
such a file from the internal format used by ADIOS.

Unfortunately, neither PLFS nor ADIOS directly sup-
port the specific data models central to the particle-based
simulations we are targeting. The goal of H5hut is to
provide these data models through an easy-to-use API
while also offering competitive parallel I/O performance.

III. DESIGN

H5hut is tuned for writing collectively from all pro-
cessors to a single, shared file. Although collective I/O
performance is typically (but not always) lower than
that of file-per-processor, having a shared file simplifies
scientific workflows in which simulation data needs to
be analyzed or visualized. In this scenario, the file-per-
processor approach leads to data management headaches

1 file = H5OpenFile("particles.h5", H5_O_WRONLY, MPI_COMM_WORLD);
2 H5SetStep(file, 0);
3 H5PartSetNumParticles(file, nparticles);
4 H5PartWriteDataFloat64(file, "x", x);
5 H5PartWriteDataFloat64(file, "y", y);
6 H5PartWriteDataFloat64(file, "z", z);
7 H5PartWriteDataFloat64(file, "px", px);
8 H5PartWriteDataFloat64(file, "py", py);
9 H5PartWriteDataFloat64(file, "pz", pz);

10 H5CloseFile(file);

1 fapl = H5Pcreate(H5P_FILE_ACCESS);
2 H5Pset_fapl_mpio(fapl, MPI_COMM_WORLD, MPI_INFO_NULL);
3 file = H5Fcreate("particles.h5", H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
4 step = H5Gcreate(file, "Step#0", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
5 memspace = H5Screate_simple(1, nparticles, NULL);
6 MPI_Allreduce(&nparticles, &sum, 1, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
7 filespace = H5Screate_simple(1, sum, NULL);
8 MPI_Scan(&nparticles, &offset, 1, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
9 H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &sum, NULL);

10 dxpl = H5Pcreate(H5P_DATASET_XFER);
11 H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);
12 dset = H5Dcreate1(step, "x", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
13 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, x);
14 H5Dclose(dset);
15 dset = H5Dcreate1(step, "y", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
16 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, y);
17 H5Dclose(dset);
18 dset = H5Dcreate1(step, "z", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
19 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, z);
20 H5Dclose(dset);
21 dset = H5Dcreate1(step, "px", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
22 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, px);
23 H5Dclose(dset);
24 dset = H5Dcreate1(step, "py", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
25 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, py);
26 H5Dclose(dset);
27 dset = H5Dcreate1(step, "pz", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
28 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, pz);
29 H5Dclose(dset);
30 H5Pclose(dxpl);
31 H5Sclose(memspace);
32 H5Sclose(filespace);
33 H5Gclose(step);
34 H5Fclose(file);
35 H5Pclose(fapl);

Fig. 2. For writing out a typical particle array with six coordinates (position and momentum), H5hut (top) uses only 10 lines of code,
while equivalent HDF5 calls (bottom) for implementing the same functionality and performance tunings require at least 35 lines.

TABLE I
OVERVIEW OF H5HUT MODULES

Module Features
Core File and error handling, time steps, file and step

attributes.
H5Part Variable-length 1D arrays of particles.
H5Block Rectilinear 3D scalar and vector fields, ghost zones,

field attributes.
H5Fed Adaptively refined tetrahedral and triangle meshes.

because large collections of files are unwieldy to manage
from a file system standpoint. On a parallel file system
like Lustre, even the ls utility will break when pre-
sented with tens of thousands of files, and performance
begins to degrade with this number of files because
of contention at the metadata server. Often a post-
processing step is necessary to refactor file-per-processor
data into a format that is readable by the analysis tool.
In contrast, H5hut files can be directly loaded in parallel
by visualization tools like VisIt and ParaView.

H5hut is a veneer API for HDF5: H5hut files are also
valid HDF5 files and are compatible with other HDF5-
based interfaces and tools. For example, the h5dump
tool that comes standard with HDF5 can export H5hut
files to ASCII or XML for additional portability. H5hut
also includes tools to convert H5hut data to the Visual-
ization ToolKit (VTK) format and to generate scripts for
the GNUplot data plotting tool.

A top design priority for H5hut was ease of use,
especially for parallel I/O. The cost of HDF5’s extensive
functionality and flexibility is a complex API that can be
daunting to inexperienced programmers and scientists,
even for simple tasks such as writing out 1D arrays of
data. Worse, effective parallel I/O is further complicated
by the variety of data layout and tuning parameters
available in HDF5. By restricting the usage scenario to
particle-based simulations, H5hut encapsulates much of
the complexity of HDF5 to present a simple interface,
thus trading off some flexibility for ease-of-use. The code
example in Figure 2 shows how 10 lines of H5hut calls
can encapsulate the same functionality of 35 lines of
HDF5 calls for writing a simple 1D array of particles.
Also, we believe that H5hut’s more verbose function
names and fewer arguments per function (design choices
that are shared by pNetCDF) produce code that is more
readable for a domain scientist.

An H5hut file consists of a series of “time steps,”
which are HDF5 groups that are added sequentially to
the file root. Each time step can hold multiple datasets,
including 1D and 3D arrays and finite element data,
of either 32- or 64-bit integer or floating point values.

file = H5OpenFile("fields.h5",
H5_O_WRONLY, MPI_COMM_WORLD);

H5SetStep(file, 0);
H5Block3dSetView(file,

xrank*XDIM, (xrank+1)*XDIM - 1,
yrank*YDIM, (yrank+1)*YDIM - 1,
zrank*ZDIM, (zrank+1)*ZDIM - 1);

H5Block3dWriteScalarFieldFloat64(
file, "Q", q);

H5Block3dWrite3dVectorFieldFloat64(
file, "E", ex, ez, ey);

H5CloseFile(file);

Fig. 3. An example of H5Block calls for writing out a 3D grid.

Attributes can be attached to the file or to an individual
time step. See Table I for an overview of H5hut modules.

The H5Part module provides the data model for 1D
arrays of particles. For writes, each MPI task can specify
the number of particles it owns and its sequential “view”
(in MPI-IO parlance) of the on-disk dataset is automat-
ically calculated (as shown in Figure 2). For reads, a
canonical view can be selected that evenly distributes the
particles in a dataset across all tasks. In both cases, the
user can also manually specify the start and end offsets
of each task’s view, or can specify a point selection using
an array of offsets.

The H5Block module provides a data model for scalar
and vector fields on rectilinear 3D grids. Again, a view
is used to represent which block of the grid is owned by
each task. The example in Figure 3 shows how to create
a view with a fixed block size of (XDIM,YDIM,ZDIM)
for every task, and where each task has been assigned
an index (xrank,yrank,zrank) into the grid. Ghost
zones of arbitrary dimension can be represented as
overlapping views, and H5Block features an algorithm
to “reduce” these ghost zones so that all tasks’ views are
disjoint, thus eliminating redundant writes for the ghost
zones.

The H5Fed module of H5hut provides a data model
for adaptively refined tetrahedral and triangle meshes.
Key features of H5Fed are tags, i.e. data associated
with entities, and access to all up- and downward ad-
jacencies. No intrinsic limits exist on the number of
vertices, elements and level of refinements and multiple
meshes can be stored in the same H5hut file. H5Fed
is aggressively optimized for minimal memory and disk
usage. Information that can be computed efficently from
other data is neither stored on disk nor kept in memory.
Currently, H5Fed only supports serial access, but a

file = H5OpenFile("mesh.h5",
H5_O_WRONLY, MPI_COMM_SELF);

H5FedAddMesh(file, H5_TETRAHEDRAL_MESH);
H5FedBeginStoreVertices(file, nvertices);
int i;
for (i = 0; i < nvertices; i++) {
H5FedStoreVertex(file, -1, Vertices[i].P);

}
H5FedEndStoreVertices(file);
H5FedBeginStoreElements(file, nelems);
for (i = 0; i < nelems; i++) {
H5FedStoreElement(file, Elems[i].vids);

}
H5FedEndStoreElements(file);
H5FedAddLevel(file);
H5FedBeginRefineElements(file);
for (i = 0; i < nelems2refine; i++) {
H5FedRefineElement(file, Elems2Refine[i]);

}
H5FedEndRefineElements(file);
H5FedCloseMesh(file);
H5CloseFile(file);

Fig. 4. An example of H5Fed calls for writing out a tetrahedral
mesh wih one level of refined elements.

parallel version is in development.
H5hut is also designed to easily facilitate post-

simulation analysis and visualization. H5PartROOT [11]
is a tool to visualize medium scale data produced with
H5hut and is based on the ROOT framework for data
analysis developed at CERN. The main Graphical User
Interface (GUI) allows convenient navigation between
time steps and between several files for quick compar-
isons at the click of a mouse. Together with scripting
capabilities, H5PartROOT covers almost all analysis task
in particle accelerator design and optimization. The basic
functionality of the tool ranges from plotting one-, two-,
and three-dimensional particle distributions to line plots
of step attributes such as emittance (projected, slice and
screen), RMS beam size and centroid position, which
are either read in directly from file or reconstructed
from the particle distribution at the current time step.
More sophisticated analysis tasks are possible using the
corresponding ROOT classes.

Figure 1 shows an example of laser wakefield simula-
tion data in H5hut format that has been rendered by VisIt.
VisIt [12] is an open-source, high-performance, scalable
visualization and analysis package for processing scien-
tific data. It has been demonstrated to efficiently render
terabytes of multi-variate scientific datasets on large HPC
systems, and features plugins that directly import particle
and field data in parallel from H5hut files.

IV. APPLICATIONS

In the following two subsections, we illustrate two
specific applications that write out as much as terabytes
of particle and field data. In both cases, an I/O solu-
tion using H5hut was deployed using fewer lines of
code than if the I/O routines had been written from
scratch in HDF5. Additionally, the performance tuning
we performed in the HDF5 and MPI-IO layers could
be implemented once in H5hut to the benefit of both
applications. In the final subsection, we describe how
H5hut files can be augmented with bitmap indices to
accelerate complex analysis tasks.

A. OPAL

OPAL (Object Oriented Parallel Accelerator Library)
is a tool for simulating charged-particle optics in large
accelerator structures and beam lines [13]. OPAL is
based on IP2L [14] and provides a data parallel approach
for particles, fields and associated operators. OPAL
is built from the ground up as a parallel application
exemplifying the fact that HPC is the third leg of
science, complementing theory and the experiment. This
third leg is made possible now through the increasingly
sophisticated mathematical models and evolving com-
puter power available on the desktop and in scientific
computing centers.

The data produced by OPAL are in general multi-
variate and describe a time-dependent, six-dimensional
phase space. The time evolution of this space is governed
by internal and external electromagnetic fields according
to Maxwell’s equations [15]. OPAL uses an FFT-based
direct solver and a pre-conditioned conjugate gradient
algorithm [16] to calculate the 3D space charge. Pro-
duction runs of OPAL codes use several thousands of
cores, on the order of 109 simulation particles, and mesh
resolutions on the order of 10243, which can be saved
for post-run analysis using H5hut.

B. MC4

MC4 is a parallel particle-mesh based cold dark matter
(CDM) code based on MC2 [17] developed by Salman
Habib (LANL), Katrin Heitmann (LANL), Robert Ryne
(LBNL), and Viktor Decyk (UCLA). One of the goals of
MC4 is to explore similarities between beam dynamics
and astrophysics simulations and further develop IP2L
[14] in order to perform largest scale simulations in the
two research areas.

MC4 makes use of the Friedmann - Lemaı̂re - Robert-
son - Walker (FLRW) metric

ds2 = c2dt2−a(t)2dx2,

which is an exact solution of Einstein’s field equations
of general relativity. It describes a simply connected,
homogeneous, isotropic expanding or contracting uni-
verse. The solution method splits the Hamiltonian into
two pieces

H = Hstream +Hgav.

The gravitational component is solved as a Poisson
problem with periodic boundary conditions, while the
streaming component uses a second order Leap Frog
integrator. MC4 is written entirely in C++ and makes
use of the IP2Lframework for parallel particle and field
interactions. MC4 currently achieves scalable parallel
performance for maximum values of Nparticles = Ngrid =
40963 using O(10,000) cores, and uses H5hut to output
several terabytes of particle and field data per time step.
We are working toward problem sizes of Npartcles =
Ngrid = 81923 or even larger using O(100,000) cores.

C. Laser Wakefield Analysis

Analysis and knowledge discovery from large, com-
plex, multi-variate laser wakefield particle accelerator
simulation data is a challenging task [18]. Researchers
are interested in identifying beams of high-energy parti-
cles formed during the coarse of the simulations. While
H5hut enables the output of large arrays of particle and
field data from such simulations, efficient and accurate
analysis of that data requires the ability to extract subsets
that meet multi-dimensional range queries. For example,
high-energy particles in laser wakefield data can be se-
lected by thresholding for large momenta in the direction
of the beam.

HDF5-FastQuery [19] is a high-level API that pro-
vides the ability to perform multi-dimensional indexing
and searching on large H5Part datasets. It leverages an
efficient bitmap indexing technology called “FastBit” [1]
that is state-of-the-art in the database community. Bitmap
indices are especially well suited for interactive explo-
ration of large-scale read-only data. Storing the bitmap
indices directly into the H5hut file significantly speeds up
accessing subsets of multi-dimensional data and allows
for portability of the indices across multiple computer
platforms.

HDF5-FastQuery allows users to efficiently execute
complex and compound range queries like

(energy > 105) && (70 < pressure < 90)

and retrieve only the subset of elements in an H5Part
dataset that meet the query conditions. Compared with
other indexing schemes, compressed bitmap indices

are compact and well suited for searching over multi-
dimensional data even for arbitrarily complex combina-
tions of range conditions.

V. PERFORMANCE AND SCALABILITY

A key strategy for bringing single-shared-file perfor-
mance up to the level of a file-per-processor approach
is to employ “collective” optimizations, which have a
long history of use in different MPI-IO implementations
(see [20] for an overview). In general, collective op-
timizations use the additional information provided by
a complete view of an I/O operation to decrease the
number of I/O accesses and reduce latency.

By default, H5hut sets the MPI-IO “virtual file driver”
in the parallel HDF5 layer to collective mode. This
enables collective buffering, an optimization that assigns
a subset of MPI tasks to act as “aggregators”. Aggre-
gators gather smaller, non-contiguous accesses into a
larger, contiguous buffer in the first phase, and in the
second phase write this buffer to the file system. On
a system with a tuned collective buffering algorithm in
the MPI-IO library, this can achieve bandwidths close
to those of a file-per-processor approach. Most MPI-
IO libraries use a heuristic to determine whether to
enable collective buffering, but accept a “hint” to force
collective buffering on. For instance, on a Cray XT
system with a Lustre file system and version 3.2 or
greater of the Message Passing Toolkit (MPT), set-
ting the environment variable MPICH_MPIIO_HINTS
to "romio_cb_write=enable,romio_cb_read=enable"

will enable collective buffering.
We ran experiments on two machines, both with Lus-

tre parallel file systems. JaguarPF is a Cray XT5 located
at Oak Ridge National Laboratory with 672 Object
Server Targets (OSTs). Franklin is a Cray XT4 located
at the National Energy Research Scientific Computing
Center with 48 OSTs.

Figure 5 shows the results of an experiment using
the MC4 application that compares H5hut shared-file
performance against a synthetic file-per-processor test
that writes the same amount of data. This synthetic
test was run using the IOR benchmarking utility [21].
Because the Lustre file system sets a hard limit of 160
OSTs over which a shared file can be striped, we also
restricted IOR to use only 160 OSTs on JaguarPF (out
of the 672 available).

We used IOR in POSIX mode, which means it can
write a large amount of data into the OS write buffer,
then return a bandwidth that is actually a measure of
the memory bandwidth and not the I/O bandwith. To

 0

 2

 4

 6

 8

 10

 12

 14

 16

1024 Cores, 320GB File
10243 Particles x 10 Timesteps

8192 Cores, 2TB File
40963 Particles x 1 Timestep

W
rit

e
Ba

nd
wi

dt
h

(G
B/

s)
JaguarPF

H5hut
IOR

 0

 2

 4

 6

 8

 10

 12

 14

 16

1024 Cores, 320GB File
10243 Particles x 10 Timesteps

8192 Cores, 2TB File
40963 Particles x 1 Timestep

Franklin

Fig. 5. A comparison of write bandwidths for H5hut output from the MC4 cosmology application and a simulated file-per-processor output
using the IOR benchmark tool. Because of variability caused by contention with other users, we ran 4 to 7 trials and show the range and
median value.

 0

 4000

 8000

 12000

 16000

 1000 2000 4000 8000 16000

 238 471 936 1868 3731

Ba
nd

wi
dt

h
(M

B/
s)

Cores

Read
File Size (GB)

 0

 4000

 8000

 12000

 16000

 1000 2000 4000 8000 16000

 238 471 936 1868 3731

Ba
nd

wi
dt

h
(M

B/
s)

Cores

Write
File Size (GB)

Fig. 6. Read and write bandwidths for a synthetic H5Block weak scaling study, scaling to 16,000 cores on Franklin and 3.7TB of data. The
read times include a halo exchange, to transmit a ghost region of cells among neighboring blocks. The solid line shows the mean bandwidth,
while the shaded region shows the minimum and maximum over repeated trials.

mitigate this effect, we modified IOR to allocate and
touch a dummy array that filled 75% of available system
memory. In previous experiments, we have found that
this memory policy defeats the OS write cache during
benchmarking. This step is necessary to accurately sim-
ulate HPC applications that use a significant portion of
memory for their data and therefore would not leave
memory available for OS write buffers.

For the write configurations we tested, file-per-
processor performance dropped at higher core counts on

JaguarPF, and H5hut’s shared-file approach performed
better. This result is corroborated by a study by Yu et
al. [22], which found that file-per-processor performance
lagged behind shared-file on JaguarPF when more than
96 OSTs were used. On Franklin, the file-per-processor
approach maintained its performance out to 8,192 cores,
but H5hut came within 75% of file-per-processor perfor-
mance.

In another experiment (see Figure 6), we conducted
a weak scaling study of the H5Block module up to

16,000-way concurrency and 3.7TB of data on Franklin.
Because each processor writes the same size block, we
are able to use a “chunked” layout in HDF5 (similarly
called an “N-1 segmented” layout by Bent et al. [9]).
A chunked dataset’s elements are stored in equal-sized
chunks within the file, allowing fast access to subsets
of dataset elements, as well as the application of com-
pression operations. HDF5 also allows the chunks to be
padded out to a multiple of the Lustre stripe size by
means of the “alignment” tuning property. When linked
against the Lustre API, H5hut can automatically detect
the stripe size of a file and set the HDF5 alignment
property to this value.

We also bypassed the MPI-IO library by using a
different “virtual file driver” (VFD) in the HDF5 layer
called MPI-POSIX, which can be selected in H5hut with
a flag at file open. The MPI-POSIX driver uses direct
POSIX (e.g. fwrite) calls that are coordinated within
the HDF5 library via MPI calls in a way that is analogous
to the MPI-IO library operating in “independent” mode.
In some scenarios, the lighter-weight MPI-POSIX driver
exhibits better performance, especially on systems with
poor MPI-IO collective performance, as was the case on
the Cray XT prior to the release of MPT 3.2.

One problem with using independent rather than col-
lective access to the file is that all MPI tasks, not just a
subset, are communicating with the OSTs. With only 48
OSTs available on Franklin, 16,000 tasks caused time-
outs in the Lustre client when writing so much data. To
mitigate this, we introduced a “throttling” feature into
H5hut that delays the write calls in a cyclic fashion by
passing an MPI token. For example, setting the throttle
factor to 8 for 16,000 tasks caused writes to be issued
in batches of 2,000 tasks, which could complete before
hitting the time-out limit. While it is unfortunate that
the time-out problem is exposed at higher layers of
the I/O software stack, we think it better to implement
a workaround like throttling at the I/O library layer
rather than to require applications to solve the problem
independently.

Overall, our H5Block experiment showed near-peak
performance on Franklin, which at the time of the
experiment had 12GB/s peak read and write bandwidth
as measured by daily IOR monitoring tests. The read
phase also included a halo exchange (with a radius of one
cell). At 16,000-way concurrency, the communication
overhead of the halo exchange caused a drop in read
performance. At 8,000-way concurrency, there was a
dip in write performance, although we were only able
to collect one data point and suspect that it suffered

file = H5OpenFile("fields.h5",
H5_O_WRONLY | H5_VFD_MPIPOSIX,
MPI_COMM_WORLD);

H5Block3dSetChunk(file, XDIM, YDIM, ZDIM);
H5SetThrottle(file, 8);

Fig. 7. These H5hut calls enable the MPI-POSIX VFD, chunking,
and throttling techniques used in the H5Block experiment.

from contention with other users. Otherwise, we saw
bandwidth increasing with concurrency, up to the 12GB/s
peak.

VI. CONCLUSION

We have demonstrated how the H5hut library can
be used to efficiently output terabytes of data from
particle- and field-based simulations at up to 16,000-
way concurrency on modern HPC systems. Moreover,
implementing these I/O solutions with H5hut is easier
and requires fewer lines of code than with HDF5 alone,
and the resulting shared-file storage interfaces well with
analysis and visualization tools.

ACKNOWLEDGMENT

This research used resources of the National Center
for Computational Sciences at Oak Ridge National Lab-
oratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725; and resources of the National
Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] K. Wu, E. Otoo, and A. Shoshani, “Optimizing bitmap indices
with efficient compression,” ACM Transactions on Database
Systems, vol. 31, pp. 1–38, 2006.

[2] The HDF Group, “Hierarchical data format version 5,” 2000-
2010, http://www.hdfgroup.org/HDF5.

[3] Unidata, “netCDF (network Common Data Form),” http://www.
unidata.ucar.edu/software/netcdf.

[4] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel
netCDF: A high-performance scientific I/O interface,” in SC
’03: Proceedings of the 2003 ACM/IEEE conference on Super-
computing, 2003, p. 39.

[5] K. Schuchardt, “Data services for the Global Cloud Resolving
Model (GCRM),” https://svn.pnl.gov/gcrm.

[6] W. Benger, “The Fiber Bundle HDF5 Library,” http://www.
fiberbundle.net/.

[7] W. Benger, A. Hamilton, M. Folk, Q. Koziol, S. Su, E. Schnet-
ter, M. Ritter, and G. Ritter, “Using geometric algebra for
navigation in Riemannian and hard disc space,” in Proceedings
of Computer Graphics, Computer Vision and Mathematics,
Plzen, Czech Republic, 2008, pp. 80–92.

[8] Lawrence Livermore National Laboratory, “Silo: A mesh and
field I/O library and scientific database,” https://wci.llnl.gov/
codes/silo.

[9] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint
filesystem for parallel applications,” in SC ’09: Proceedings of
the 2009 ACM/IEEE Conference on Supercomputing, Portland,
Oregon, 2009.

[10] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable,
metadata rich IO methods for portable high performance IO,”
in IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), Rome, Italy, 2009.

[11] T. Schietinger, “H5PartROOT: a ROOT based graphical user
interface for H5Part,” 2006–2010, http://amas.web.psi.ch/tools/
H5PartROOT/index.html.

[12] Lawrence Livermore National Laboratory, “Visit Visualization
Tool,” https://wci.llnl.gov/codes/visit.

[13] A. Adelmann et al., “The OPAL (Object Oriented Parallel
Accelerator Library) Framework,” Paul Scherrer Institut, Tech.
Rep. PSI-PR-08-02, 2008–2010.

[14] A. Adelmann, “The IPPL (Independent Parallel Particle Layer)
Framework ,” Paul Scherrer Institut, Tech. Rep. PSI-PR-09-05,
2009.

[15] J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J.
Zhang, “Beam dynamics in high intensity cyclotrons including
neighboring bunch effects: Model, implementation, and appli-
cation,” Phys. Rev. ST Accel. Beams, vol. 13, no. 6, p. 064201,
Jun 2010.

[16] A. Adelmann, P. Arbenz, and Y. Ineichen, “A fast parallel
Poisson solver on irregular domains applied to beam dynam-
ics simulations,” Journal of Computational Physics, vol. 229,
no. 12, pp. 4554–4566, 2010.

[17] K. Heitmann, P. M. Ricker, M. S. Warren, and S. Habib, “Ro-
bustness of cosmological simulations i: Large scale structure,”
Astrophys. J. Suppl. 160, 28, 2005, [arXiv:astro-ph/0411795].

[18] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith, C. G. R.
Geddes, E. Cormier-Michel, S. Ahern, G. H. weber, P. Messmer,
H. Hagen, B. Hamann, and E. W. Bethel, “High performance
multivariate visual data exploration for extemely large data,”
in SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, Austin, Texas, 2008, LBNL-716E.

[19] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and E. W. Bethel,
“HDF5-FastQuery: Accelerating complex queries on HDF
datasets using fast bitmap indices,” in Proceedings of the 18th
International Conference on Scientific and Statistical Database
Management, July 2006, LBNL-59602.

[20] R. Thakur, W. Gropp, and E. Lusk, “Optimizing noncontiguous
accesses in MPI-IO,” Parallel Computing, vol. 28, no. 1, pp.
83–105, 2002.

[21] H. Shan, K. Antypas, and J. Shalf, “Characterizing and pre-
dicting the I/O performance of HPC applications using a
parameterized synthetic benchmark,” in SC ’08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, Austin,
Texas, 2008.

[22] W. Yu, J. S. Vetter, and S. Oral, “Performance characterization
and optimization of parallel I/O on the Cray XT,” in IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2008.

